Overview
A myriad of sectors are heavily dependent on large simulations of physical systems based primarily on traditional methods like Molecular Dynamics, and Density Functional Theory. Such sectors include Pharmaceutical, energy, semiconductors, etc. For example, in the recent covid-times, millions of Molecular Dynamics simulations have been run, largely independently, related to the ACE receptor and spike protein to better understand the binding mechanisms[3]. Currently, most of this information is dormant, redundant, and inconclusive. The data is frequently dormant as the simulation data is analyzed for publications or industrial applications and then held on local data storage units, redundant as there are often teams around the world doing highly similar simulations, and inconclusive because often single simulations lack enough information to lead to conclusive results. Thus, centralized infrastructures are rather limiting in developing AI-centric frameworks for improving the efficiency and accuracy of physics computation and knowledge extraction. As bad as this is, this is only the surface of the problem. The larger problem is that there is no natural way to incorporate vast and diverse amounts of physics information (experiments, quarks, chemicals, proteins), data, knowledge , and algorithms in a cohesive and synergistic manner.
Description of us and our goals
Our end goal is clear. We hope to create the correct infrastructure to incentive mass adoption of cardano-based protocols in the computationally oriented scientific communities including academia, industry, start-ups, and individual community members.
We are creating a decentralized protocol for the simulation of physical systems while leveraging Nunet for decentralized computational resources and SingularityNet for decentralized AI enhancements with open ended improvements using anything from Deep Learning [1], to neuro-symbolic AI [2], quantum chemistry [4], cognitive architectures[5], etc. Additionally, we are building a tokemonics system to incentive computation, data, algorithm development, mining, and community rewards for collaborations and support from individual community members, academics, and even corporations. One of our driving principles is the coupling of advancements in artificial intelligence to advancements in functional near-term technologies.
Our solutions will be useful in markets like Biotechnology, Artificial Intelligence, Chemical Synthesis, and many more. These are quickly growing markets, and would be absolutely amazing for the health of the cardano ecosystem to bridge the market demand home. Take for instance just the Biotechnology market; it is expected to surpass 1.5 Trillion by 2030 and growing at nearly ten percent per year [6].
The paradigm shift we are creating with SNet and Nunet stems from creating a computational and algorithm environment for end-to-end integration of multi-scale simulations for developing and employing theoretical and AI algorithms built up from heterogeneous data sources, symbolic knowledge extraction, and cognitive principles to lead to the most interconnected framework for self-consistent computations in the physical sciences. This will all be done to mimic the use of High Performance Computing infrastructures, and in principle, we should be able to simulate molecular systems faster than many of the top supercomputer when Nunet is fully developed with a large enough ecosystem. All of our code will be developed for parallelized, multi-virtual node CPUs/GPUs. By using AI integration, we should also be able to surpass many of the conventional bottlenecks of such computations.
Community and Industry relations
From an industry perspective, users (entities taking advantage of our computational protocol) can exchange tokens for theoretical computations of a particular system of study and/or private/public algorithms developed by various entities (individuals, research labs, corporations, community members). From the community perspective they will get rewarded for the contribution to data, computation, algorithm development (to name a few).
Rewards are mostly obtained from the following procedures: physics data (experiments, simulation data, theory), computational resources and storage, algorithm developments (developing new algorithms, training neural networks, improving existing networks), mining, and technology development. The first two are rather clear. In short, mining is the eventually-automated process of performing specific computations as suggested by community members or recommended by an AI agent that anyone can partake in by staking or resource allocation. As well, entities that develop on the protocol (via any of the above including mining) can obtain rewards via a predetermined ratio of tokens paid by industrial entities using smart contracts.
In this proposal we are specifically looking to develop a minimum viable product (MVP) that can be built on Cardano to begin collaborating with pharmaceutical industries and biotechnology with the goal of being the decentralized cloud solution for AI-based drug and therapeutic development.
Phases
<u>Phase I</u> is the development of MVP of AI-based algorithms. After this we will begin to collaborate with industry.
Phase II is the growth of our team and external funding events to continue development begin collaborations.
Phase III is to create a smart contract platform and interface as well as increase connectivity of the algorithms to begin fully autonomous drug development solutions. Here 'connected' means that the algorithms should be more synergistic, end-to-end, and covering multi-faceted areas of AI development from quantum properties of the small molecules to coarse grained dynamics of proteins and solvent.
Phase IV is continued automation, community development, tokenomics, and the most rewarding stage. At this stage we expect to begin to turn a profit, allowing a percentage of our profits to be cycled into the community and allow for continued development.
Our proposal is concentrated on Phase I of the above list.
The goal of the Business solutions challenge is to remove the middle man and create automated processes to increase Cardano's adoption outside the financial sector. Here we hope to do just that by creating a decentralized AI based drug development solution by providing the computation and the AI algorithms necessary to help pharma and biotechnology industries develop better technologies, all while incentivizing community involvement, industry and academic collaborations and involvement, and guiding Cardano's technology strongly into new directions.
Mostly general technical research and development uncertainties and complexity of the project from that side. We are fairly confident that the team will be able to deal with difficulties, but that may require additional time and work. Of course, we are working with Nunet, and any delays on their side could be near-term problematic, but can be circumvented by focusing on the details that can be directly implemented at current times. They are a well-proven team, and delays may happen, but they build great code.
We also need to hire two AI developers in order to successfully attempt development.